from hypothesis import given
from hypothesis import strategies as st
from haskpy.internal import class_function, abstract_class_function
from haskpy.testing import assert_output
from haskpy import testing
# Use the "hidden" module in order to avoid circular imports
from ._contravariant import Contravariant
from ._functor import Functor
[docs]class Profunctor(Functor, Contravariant):
"""Profunctor
Minimal complete definition: ``dimap | (contramap & map)``.
Instead of using ``lmap`` and ``rmap`` as in Haskell, let's use the already
introduced ``contramap`` and ``map``.
"""
[docs] def dimap(self, f, g):
"""p b c -> (a -> b) -> (c -> d) -> p a d"""
return self.contramap(f).map(g)
[docs] def contramap(self, f):
"""(a -> b) -> p b c -> p a c"""
from haskpy.utils import identity
return self.dimap(f, identity)
[docs] def map(self, g):
"""(b -> c) -> p a b -> p a c"""
from haskpy.utils import identity
return self.dimap(identity, g)
#
# Sampling methods for property tests
#
@abstract_class_function
def sample_profunctor_type(cls, a, b):
pass
#
# Test typeclass laws
#
@class_function
@assert_output
def assert_profunctor_identity(cls, x):
from haskpy.utils import identity
return (
x,
x.dimap(identity, identity),
)
@class_function
@given(st.data())
def test_profunctor_identity(cls, data):
# Draw types
a = data.draw(testing.sample_eq_type())
b = data.draw(testing.sample_type())
fab = data.draw(cls.sample_profunctor_type(a, b))
# Draw values
x = data.draw(fab)
cls.assert_profunctor_identity(x, data=data)
return
#
# Test laws based on default implementations
#
@class_function
@assert_output
def assert_profunctor_dimap(cls, x, f, g):
from haskpy import dimap
return (
Profunctor.dimap(x, f, g),
x.dimap(f, g),
dimap(f, g, x),
)
@class_function
@given(st.data())
def test_profunctor_dimap(cls, data):
# Draw types
b = data.draw(testing.sample_eq_type())
c = data.draw(testing.sample_eq_type())
d = data.draw(testing.sample_type())
fbc = data.draw(cls.sample_profunctor_type(b, c))
# Draw values
x = data.draw(fbc)
f = data.draw(testing.sample_function(b))
g = data.draw(testing.sample_function(d))
cls.assert_profunctor_dimap(x, f, g, data=data)
return
@class_function
@assert_output
def assert_profunctor_map(cls, x, f):
return (
Profunctor.map(x, f),
x.map(f),
)
@class_function
@given(st.data())
def test_profunctor_map(cls, data):
# Draw types
b = data.draw(testing.sample_eq_type())
c = data.draw(testing.sample_eq_type())
d = data.draw(testing.sample_type())
fbc = data.draw(cls.sample_profunctor_type(b, c))
# Draw values
x = data.draw(fbc)
g = data.draw(testing.sample_function(d))
cls.assert_profunctor_map(x, g, data=data)
return
@class_function
@assert_output
def assert_profunctor_contramap(cls, x, f):
return (
Profunctor.contramap(x, f),
x.contramap(f),
)
@class_function
@given(st.data())
def test_profunctor_contramap(cls, data):
# Draw types
b = data.draw(testing.sample_eq_type())
d = data.draw(testing.sample_type())
fbd = data.draw(cls.sample_profunctor_type(b, d))
# Draw values
x = data.draw(fbd)
f = data.draw(testing.sample_function(b))
cls.assert_profunctor_contramap(x, f, data=data)
return